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Although we can often observe time-series data of many elements, these elements do not always interact
with each other. This paper proposes a scheme to estimate the interdependency among observed elements only
by time-series data, which is useful for selecting essential elements to optimize multivariate prediction model.
Because this estimation is a sort of combinatorial optimization problems, we applied the genetic algorithm as
a method to moderate this problem. Through some simulations, we confirmed performance of our method,
which can identify interaction of multivariate system and can improve its prediction accuracy. Especially, our
method can be applied to predict real foreign-exchange markets even if system has nonstational property and
its structure changes dynamically.
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I. INTRODUCTION

In the real world, there are many complex systems whose
elements interact with each other like a network and consti-
tute multivariate systems. The behavior of these systems is
too complex to be controlled and to be predicted. In this
paper, we discuss how to predict such complex multivariate
systems effectively.

If we predict the behavior of element i �i=1,2 , . . . ,N�
constituting a system, we can use some behavior of observed
elements to make a prediction model. However, we are not
sure which observed elements relate to the element i. If we
use elements disrelated with the element i, prediction model
becomes complex and its generalization ability declines be-
cause of overfitting for learning data �1–3�, and then predic-
tion accuracy worsens. Namely, we have to constitute a pre-
diction model only by the set of elements interacting with
element i, �j�i���j�i�=1,2 , . . . ,Ni�, and we need the method
to estimate such elements �j�i�� from all elements. Here, el-
ements �j�i�� are explanatory variables for the objective vari-
able i. If we can estimate �j�i��, we can predict future behav-
ior of i with the time-series data of �j�i�� as learning data.
Moreover, estimated results can be clue to analyze complex
systems.

For this motivation, several statistical measures—the cor-
relation coefficient, the partial correlation coefficient, etc.
could be useful to estimate interaction from the viewpoint of
similarity of each element’s behavior. However, because real
systems often have nonlinearity, linear statistics are not al-
ways useful. In this study, we identity interactions from the
viewpoint of nonlinear prediction accuracy of previous be-
havior. However, because this numerical cost grows expo-
nentially according to the number of elements, this identifi-
cation is a sort of combinatorial optimization problems.
Although it is almost impossible to find the exact optimum
solution, there are several metaheuristic searches �4� to find

very good near-optimum solution in a reasonable computa-
tional time. In this paper, we applied the genetic algorithms
�GA� as a more popular method to moderate this optimiza-
tion problem.

Next, we predict the future behavior of element i with the
optimized nonlinear prediction model based on estimated in-
teractions. Here, there are so many nonlinear prediction
methods �5–10� that can be categorized into two classes: glo-
bal and local approximations of relationship between ele-
ment i and elements �j�i��. In particular, global approxima-
tions are often performed by neural network or radial basis
functions �7�. In our proposed scheme, simple prediction
method is more desirable because we have to consider the
numerical cost of GA. Therefore, our scheme is based on
simple local linear approximation method �5� proposed by
Lorenz.

To confirm the efficiency of our scheme to estimate the
structure and predict its multivariate system, we perform
some simulations with a numerical model of complex sys-
tems, the coupled map lattice �CML� �11�, and evaluate the
accuracy of estimated structure and that of predicted behav-
ior. In addition, we compare prediction methods between the
optimized prediction model by our scheme and a lazy pre-
diction model based on all observed elements, that is, with-
out any selection of elements. By comparing each prediction
accuracy, we evaluate the efficiency of selecting elements to
optimize prediction model.

Moreover, as application to real systems, we predict
foreign-exchange markets composing a multivariate system.
Because it is possible that the mechanism of real systems is
dynamically changed by external effects such as interna-
tional accidents and politicians’ interviews, we have to iter-
ate the optimization of prediction model with GA. In order to
confirm the importance of this dynamical optimization, we
perform simulations to predict a real financial system and
numerical complex systems.
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II. ESTIMATION OF INTERACTIONS AMONG
ELEMENTS BY THE BEST PREDICTION

A. Prediction model based on direct interactions

We denote time-series data of element i by xi�t� and de-
note the behavior of a multivariate system by

v�t� = �x1�t�,x2�t�, . . . ,xi�t�, . . . ,xN�t�� , �1�

which means that we observed the behavior of N elements.
In this study, to predict future behavior of v�t�, we use the
local linear approximation method �5�. If we perform predic-
tion of v�t� by all elements, we first find some near neighbors
v�tn�, n=1, . . . ,m, from the previous behavior, that is, t−L
� tn� t where L is the length of learning data. Then, we
predict one-step future behavior of v�t� by

ṽ�t + 1� =
1

m
�
n=1

m

v�tn + 1� . �2�

This prediction method approximates temporal displacement
of the present state v�t� linearly with local near neighbors.
However, from the viewpoint of the whole of approximated
state space, this approximation globally works as nonlinear
prediction because each set of neighbors and each approxi-
mation are different locally according to state of v. Then, the
number of neighbors m should be set so as to keep local
property of v�t� and to surround v�t� with v�tn�. Therefore, if
we denote the dimension of v as d, we set m=d+1.

If we aim to predict element i, we can obtain its predicted
value x̃i�t+1� from the i-th element of ṽ�t+1�. However, this
prediction model does not work well because all observed
elements do not always compose the same system like Eq.
�1�. Namely, there is no guarantee that these elements inter-
act with element i that we aim to predict. If element i is
caused only by elements i1, i2, and i3, the structure is denoted
as

xi�t + 1� = F�xi�t�;xi1
�t�,xi2

�t�,xi3
�t�� , �3�

where F is a dynamics of system, element i means the ob-
jective variable, and element i1�3 means explanatory vari-
ables. In this case, we have to modify Eq. �1� into

v�t� = �xi�t�,xi1
�t�,xi2

�t�,xi3
�t�� , �4�

and perform one-step prediction approximating the dynamics
F locally by Eq. �2�. This prediction model can select better
neighbors v�tn� and can improve prediction accuracy more
than using Eq. �1�, which causes overfitting to the structure
disrelated with element i, and which decreases generalization
ability �1–3� for predictions after learning data.

B. Applying GA algorithm to search the best prediction model

If we can find the best combination optimizing prediction
accuracy, it is possible to estimate elements �j�i�� interacting
with element i. On the contrary, if we do not use suitable
elements to make v�t� like Eq. �4�, v�t� cannot reconstruct
the dynamics of multivariate system properly, and prediction
accuracy must decline because suitable neighbors v�tn� can-
not be selected for the local linear prediction. Here, the num-

ber of combinatorial pairs C for making v�t� grows exponen-
tially to the number of observed elements N, that is, C=2N.
We have to search the optimum prediction model from these
combinatorial pairs. Namely, to identify interactions, that is,
to search the set of elements �j�i�� is a sort of combinatorial
optimization problems. In this paper, we apply the genetic
algorithm as a method to moderate this problem. Moreover,
we make prediction models by using each combinatorial pair
of elements, and estimate each fitting accuracy of learning
data as the validity of prediction model and interaction
among elements.

First, we initialize each genotype of GA as random binary
series like gi= �11001¯�. In our study, we prepared 30 geno-
types. Here, gi�j�=0 means that element j is not used to
predict element i as v�t� of Eq. �4�, and gi�j�=1 means that
element j is used. Then, to evaluate the goodness of each
genotype gi, we estimate its fitting accuracy by predicting
behavior of element i. Here, to avoid misestimation by over-
fitting for learning data and to evaluate generalization ability
of prediction model, we used the K-fold cross-validation
�CV� method �3,12�, which is one of the resampling schemes
and is applied for time-series prediction �13–15�; we divided
learning data x�T�, t−L�T� t, into K subsamples equally.
Here, a single set x�Tk�, k=1,2 , . . . ,K, was used as testing
data to estimate modeling accuracy, and the remaining K
−1 subsamples x�TK−1� were used as training data to estimate
local flow of the dynamics F. Namely, we constituted
v�TK−1� based on each genotype gi, and can approximate F
linearly with local near neighbors v�Tn��v�TK−1�. Then,
v�T+1��v�TK� is predicted from the previous data v�T�
�v�Tk� according to the approximated F̃. And then, we es-
timated a prediction accuracy ek,i with the correlation coeffi-
cient between the true testing data xi�Tk� and the predicted
values x̃i�Tk�. Similarly, this process is repeated K times with
each of the subsamples used exactly once as the testing data.
Finally, we calculated the mean value of the set �ek,i� as ei,
which means a general fitting error considering generaliza-
tion ability of prediction model without overfitting learning
data x�T�. Then, we considered this fitting error as the good-
ness ei of each genotype gi. In our study, we set K=2 for
saving numerical cost.

Next, by GA’s algorithms such as the crossover and the
mutation, each genotype gi is evolved through generaliza-
tions. At each generalization step, because better genotypes
having higher goodness are easier to survive, we preferen-
tially select genotypes at random with replacement so that
better genotypes are selected more frequently according to ei.
The number of selected genotypes is the same as that of
initial genotypes. Then, we mix two genotypes with the
crossover algorithm to breed new genotypes; if two geno-
types are gi�= �00000� and gi�= �11111�, new genotypes be-
come like gi�= �10101� and gi�= �01010�. This crossover is
called multipoints crossover, whose crossover points are de-
cided randomly. Moreover, the mutation algorithm is used to
avoid that genotypes are close to each other. Mutation points
are selected randomly, and each gene of selected mutation
points is changed; if the value is 1, it is replaced by 0. In
particular, the selected genotypes having the highest good-
ness are treated as elite genotypes, which can survive without
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any modification. In our study, we treated 10 �%� of selected
genotypes as elite genotypes, and divided the other geno-
types for the crossover and for the mutation randomly at the
ratio of 9:1. By iterating these algorithms, we can evolve
genotypes, and can obtain good near-optimum solution in a
reasonable computational time. We set the number of genera-
tion to 500. After the optimized genotype gi

� and its goodness
ei

� are obtained, we record ei
��gi

� in the i-th line of the
matrix Mi←j as the plausibility of the interaction from ele-
ment j to element i. By iterating above process and changing
a predicted element from i=1 to i=N, we can estimate the
matrix Mi←j showing directed and weighted interactions
among elements. In the case of undirected estimation, we
calculate

Mi,j =
Mi←j + Mj←i

2
, �5�

where Mj←i is calculated by Mi←j
T

C. Evaluating the efficiency of the proposed estimation

To confirm the efficiency of our estimation presented
above, we performed numerical simulations by using the fol-
lowing coupled map lattice �11� modeling complex systems:

xi�t + 1� = F	�1 − ��xi�t� +
�

Ni
�

j��j�i���p�

Ni

xj�t�
 , �6�

where xi�t� is time-series data of the i-th element �i
=1,2 , . . . ,N�, Ni is the number of elements interacting with
the i-th element, � is the strength of interactions, and
�j�i���p� is a set of elements interacting with the i-th element.

Although the regular CML �11� has a ring lattice where
each element interacts only both neighbors, this CML of Eq.
�6� is modified by the Watts-Strogatz �WS� model �16� so
that the topology of interactions can be changed according to
p. As the definition of WS model, we first prepare a ring
lattice where each element is connected with the nearest �
neighbors, that is, we prepare a regular network �16�, and the
total number of edges is N�

2 . In our study, we set N=100 and
�=4. Next, we rewire each edge according to the rewiring
probability p, by cutting one side of edge and randomly con-
necting it to some element. Besides, once rewired edges are
fixed. If we set p=0, the topology is the regular network.
Moreover, we can realize the small-world network �16� by
setting 0� p�1 and the random network �16� by setting p
=1. In our study, we set p=1 because the topology of the
random network is the most complex. Moreover, as dynam-
ics F, we used the logistic map: F�x�=1−ax2, which is
widely analyzed as a sort of chaotic maps. Especially, when
a=2, each element moves chaotically by the dynamics of the
logistic map. Therefore, we set a=2 to derive complex be-
havior. Then, because the system has only undirected inter-
actions, we estimate Mi,j by Eq. �5�.

As the accuracy of identified interacting elements E, we
calculate

E =

�
i=1

N

�� j̃�i�� � �j�i���

�
i=1

N

��j�i���

, �7�

where �j�i�� corresponds to the true elements interacting with
element i, and � j̃�i�� corresponds to the estimated ones. That
is, E=1 means perfect estimation of interactions.

In addition, in our previous study �17,18�, we estimate
interactions by using the correlation coefficient Ci,j, the par-
tial correlation coefficient Pi,j, the mutual information Ii,j,
and the transfer entropy �19� Ti,j between time-series data of
observed elements. The mutual information and the transfer
entropy can estimate nonlinear interactions, and each statis-
tics are defined as follows:

Ii,j = �
t

p�xi�t�,xj�t��log
p�xi�t�,xj�t��

p�xi�t��p�xj�t��
,

Ti→j = �
t

p�xj�t + 1�,xj�t�,xi�t��log
p�xj�t + 1��xj�t�,xi�t��

p�xj�t + 1��xj�t��
,

Ti,j =
1

2
�Ti→j + Tj→i� ,

where Ti,j is used to estimate an undirected interaction. In
this study, these measures Ci,j, Pi,j, Ii,j, and Ti,j are used as
comparison with our estimation Mi,j. Then, because each
component of these measures shows the possibility of inter-
action between elements i and j, we detected the set of in-
teracting elements � j̃�i�� according to larger components of
each measured matrix. Here, the number of detected interac-
tions is limited to that of the true interactions, that is,
�i=1

N �� j̃�i���=�i=1
N ��j�i���. If a component �i , j� of a matrix is

large enough for the detection, it is concluded that elements
i and j interact with each other and one element is an ex-
planatory element of the other objective element. Then, we
calculate each estimation accuracy comparing � j̃�i�� and
�j�i�� by Eq. �7�. In the case of using each measure: Ci,j, Pi,j,
Ii,j, and Ti,j, each estimation accuracy is denoted as EC, EP,
EI, and ET, respectively.

Figure 1 shows our proposed method changing model pa-
rameters p and � of Eq. �6�. As shown in shaded regions of
Fig. 1�a�, there are many cases where the proposed method
Mi,j is the optimum method. Moreover, even if our proposed
method is not the optimum method, the difference between
each best accuracy E��p ,�� shown in Fig. 1�b� and EM�p ,��
by our proposed method is small as shown in Fig. 1�c�.
These results are almost the same if we change the
parameters—the number of elements N and the total length
of testing and learning data L for the cross-validation method
�3�.

From results, we confirm that our method can estimate
structure of systems and can identify interacting elements
�j�i��. Namely, our method might be able to improve a pre-
diction model like Eq. �4� against Eq. �1�. This possibility is
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verified in Sec. II D. However, Fig. 1�b� shows that it be-
comes more difficult to estimate interactions as � becomes
smaller or p becomes larger. When p is large, a system
verges to the random network whose elements are eager to
synchronize each other because the shortest path length be-
tween elements becomes small �16�. Because of these weak
interactions and synchronized system, each set of time-series
data obtained through elements is very similar, and it be-
comes difficult to extract enough information to estimate in-
teractions among elements.

D. Nonlinear prediction based on the estimated interactions

To confirm the improvement of prediction model based on
the estimated interactions � j̃�i�� by Mi,j, we perform predict-
ing future behavior of elements. Besides, for comparison, we
also perform lazy predictions based on Eq. �1� with all ele-
ments without any selection. In these simulations, to estimate
prediction accuracy, we calculate the correlation coefficient
between the true time-series data xi�t� and the predicted time-
series data x̃i�t�. Here, we denote Gi as the prediction accu-
racy of element i by using the modified V�t� based on � j̃�i��
estimated by Mi,j, and we denote Ai as that by using the v�t�
of Eq. �1� composed by all observed elements.

Figures 2�a� and 2�b� show each mean value �Gi�p ,��
i

= 1
N�i=1

N Gi�p ,�� and �Ai�p ,��
i=
1
N�i=1

N Ai�p ,��. We can con-
firm �Gi�p ,��
i� �Ai�p ,��
i in almost all situations. Namely,
the prediction accuracy by the proposed method is better

than that by using all observed elements, that is, lazy predic-
tion.

Moreover, to verify the advantage of the proposed method
carefully, we performed the Wilcoxson’s sign rank sum test.
Here, we consider null hypothesis as �Gi�� �Ai�, and perform
one-side test by significant level �=0.01. If the null hypoth-
esis is rejected, we can insist the advantage of the proposed
method, that is, �Gi�� �Ai� aggressively. As shown in Fig.
2�c�, we can confirm rejections even by �=0.01 in almost all
situations.

III. DYNAMICAL OPTIMIZATION FOR PREDICTING
REAL MULTIVARIATE SYSTEMS

As an application of the proposed method, we tried pre-
dicting real foreign-exchange markets in 1996 �20�. This sys-
tem is composed by 25 types of foreign exchanges �21�, and
shows us very complex behavior because exchange markets
interact with each other. Exchange price of each market is
recorded every 30 minutes, and corresponds to xi�t� as be-
havior of each element in a multivariate system, so N=25 in
this case. As presented in Sec. I, predicting real systems ac-
curately is very hard because real systems are often affected
by gusty external effects and change their structure dynami-
cally. Therefore, in this section, we dynamically optimized
prediction model by GA iterating our proposed method.

To examine the advantage of this dynamical optimization,
we compared several prediction methods: the first method
�Method 1� uses all elements like Eq. �1�, the second method
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FIG. 1. �a� Phase diagram of the optimum method which maximizes the estimation accuracy of interacting elements E�p ,�� of Eq. �7�.
�b� The best accuracy E��p ,�� estimated by each optimum method shown in Figs. �a�. �c� The difference between the best accuracy E��p ,��
shown in Figs.�b� and the accuracy EM�p ,�� by our proposed method Mi,j, that is, E��p ,��−EM�p ,�� is shown. Upper figures show the case
that N=30 and L=100, and lower figures show the case that N=50 and L=200.
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�Method 2� uses the only elements selected by the GA gi
� as

introduced in Sec. II B, but the optimization is performed
only once at the first prediction and the same selected ele-
ments are reused iteratively. Besides, as the last method
�Method 3�, we performed the dynamical optimization every
prediction, and used new elements gi

� selected by the GA to
modify v�t� of Eq. �1�.

Moreover, because it is difficult to predict real systems
accurately, in this section, we simply predicted whether one-
step’s future behavior rises or falls. That is, if x̂i�t+1�
−xi�t��0, we predict that future behavior will rise, or if
x̂i�t+1�−xi�t��0, we predict that future behavior will fall.
Then, as comparison, we also predicted the modified CML of
Eq. �6� whose structure does not change unlike real systems.

The results are shown in Tables I and II. Here, to evaluate
the performance of each method, we estimated two measures
Pi �i=1,2 , . . . ,N� and R. The measure Pi means the percent-
age of correctly predicting whether i-th market’s future
movements rise or fall, R means the percentage of improved
elements whose Pi becomes better by using Method 2 or
Method 3 than Pi of Method 1. Moreover, we performed the
Wilcoxson’s sign rank sum test whose null hypothesis is that
�Pi� of Method 2 or Method 3 is not more than that of
Method 1, and performed one-side test by the significant
level �=0.01.

As results, we can confirm the efficiency of the optimiza-
tion by the GA. Especially, dynamical optimization, Method
3, shows the best prediction performance. Moreover, in real
financial system, Table I shows that Method 2 has no differ-
ence with Method 1. These results support the fact that this
system changes dynamically. Therefore, even Method 2 is
insufficient because the optimization is performed only once

TABLE I. The results of predicting real foreign-exchange mar-
kets. The symbol Pi means prediction accuracy of i-th market,
�Pi
i=

1
N�i=1

N Pi, and R means the percentage of improved elements
whose Pi becomes better by Method 2 or Method 3 than Pi of
Method 1. Each significance test examines the advantage of Method
2 or 3 against Method 1. For more details, see Sec. III.

�Pi
i

�%�
R

�%� The significance test

Method 1 56

Method 2 56 44 Not rejected

Method 3 60 96 Rejected by �=0.01
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FIG. 2. �a� The prediction accuracy �Gi�p ,��
i by using the modified v�t� based on the interacting elements � j̃�i�� estimated by the
proposed method Mi,j. �b� The prediction accuracy �Ai�p ,��
i by using the V�t� of Eq. �1� composed by all observed elements. �c� The result
of the significant test of �Gi�p ,���� �Ai�p ,��� by significant level �=0.01. If the null hypothesis �Gi�p ,���� �Ai�p ,��� is rejected, the
proposed method is shown as shaded region. Upper figures show the case that N=30 and L=100 and lower figures show the case that N
=50 and L=200.

TABLE II. The same as Table I, but the modified CML of Eq.
�6� was predicted.

�Pi
i

�%�
R

�%� The significance test

Method 1 84

Method 2 88 73 Rejected by �=0.01

Method 3 92 80 Rejected by �=0.01
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at the first prediction. Namely, we have to optimize predic-
tion model dynamically for predicting real systems.

Table II also shows the efficiency of optimizing prediction
model for the modified CML. However, because this system
does not change dynamically, not only Method 3 but also
Method 2 can improve prediction accuracy. Moreover, the
difference between Pi of Method 2 and that of Method 3
cannot be confirmed by the significance test. Therefore,
Method 2 is adequate to predict systems having invariant
structure and is effective from the viewpoint of numerical
cost.

IV. CONCLUSIONS

In this paper, we discussed the method to select capital
elements for predicting multivariate systems properly. As the
procedure, we identify interactions among elements of a
multivariate system, and optimize prediction model. Because
the identification and the optimization are considered as a
sort of combinatorial optimization problems, we applied the
genetic algorithm as a method to moderate the problem. By

some numerical simulations comparing with the lazy predic-
tion using all observed elements without any selection, we
can conclude as follows:

�i� we can optimize prediction model with previous data
by applying GA algorithm.

�ii� We can identify interactions of multivariate systems
by referring to the optimized prediction model.

�iii� By using the optimized prediction model, we can also
predict new time-series data more accurately.

�iv� In the case that the structure of system dynamically
changes like real systems, we can improve prediction accu-
racy by optimizing prediction model iteratively every predic-
tion.
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